BOLD matches neuronal activity at the mm scale: A combined 7 T fMRI and ECoG study in human sensorimotor cortex

نویسندگان

  • Jeroen C. W. Siero
  • Dora Hermes
  • Johannes M. Hoogduin
  • Peter R. Luijten
  • Nick F. Ramsey
  • Natalia Petridou
چکیده

High resolution BOLD fMRI has the potential to map activation patterns of small neuronal populations at the scale of cortical columns. However, BOLD fMRI does not measure neuronal activity, but only a correlate thereof, since it measures blood dynamics. To confirm that BOLD activation maps reflect neuronal population activity patterns, a direct comparison with neuro-electrophysiological data from the same cortical patch is necessary. Here, we compare BOLD activation patterns obtained with fMRI at 7 T to electrophysiological patterns obtained with implanted high density electrocorticography (ECoG) grids in the same patch of human sensorimotor cortex, and with similar resolution (1.5mm). We used high spatially sampled high-frequency broadband (HFB) power from ECoG, which reflects local neuronal population activity. The spatial distribution of 7 T BOLD activation matched the spatial distribution of ECoG HFB-power changes in the covered patch of sensorimotor cortex. BOLD fMRI activation foci were located within 1-3mm of the HFB-power ECoG foci. Both methods distinguished individual finger movement activation within a 1cm cortical patch, revealing a topographical medial to lateral layout for the little finger to index to thumb. These findings demonstrate that the BOLD signal at 7 T is strongly correlated with the underlying electrophysiology, and is capable of discriminating patterns of neuronal population activity at a millimeter scale. The results further indicate the utility of 7 T fMRI for investigation of intra-area organization of function and network dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging

Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...

متن کامل

Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity.

fMRI is the foremost technique for noninvasive measurement of human brain function. However, its utility is limited by an incomplete understanding of the relationship between neuronal activity and the hemodynamic response. Though the primary peak of the hemodynamic response is modulated by neuronal activity, the origin of the typically negative poststimulus signal is poorly understood and its a...

متن کامل

Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local field potential

The most widespread measures of human brain activity are the blood-oxygen-level dependent (BOLD) signal and surface field potential. Prior studies report a variety of relationships between these signals. To develop an understanding of how to interpret these signals and the relationship between them, we developed a model of (a) neuronal population responses and (b) transformations from neuronal ...

متن کامل

An fMRI study of human visual cortex in response to spatiotemporal properties of visual stimuli

  ABSTRACT  Background: The brain response to temporal frequencies (TF) has been already reported, but with no study reported for different TF with respect to various spatial frequencies (SF).  Materials and Methods: fMRI was performed by 1.5T GE-system in 14 volunteers during checkerboard, with TFs of 4, 6, 8 and 10Hz in low and high SFs of 0.5 and 8cpd.  Results: Average percentage BOLD signa...

متن کامل

Ultra high-field (7 T) multi-resolution fMRI data for orientation decoding in visual cortex

Multivariate pattern classification methods have been successfully applied to decode orientation of visual grating stimuli from BOLD fMRI activity recorded in human visual cortex (Kamitani and Tong, 2005; Haynes and Rees, 2005) [12], [10]. Though there has been extensive research investigating the true spatial scale of the orientation specific signals (Op de Beeck, 2010; Swisher et al., 2010; A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 101  شماره 

صفحات  -

تاریخ انتشار 2014